Delaunay 三角剖分 – 從 2-D Delaunay 到 3-D Delaynay

Delaunay Triangulation – From 2-D Delaunay to 3-D Delaunay
Author: Wang Jing
Institute: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
Delaunay triangulations are widely used in scientific computing in many diverse applications. While there are numerous algorithms for computing triangulations, it is the favorable geometric properties of the Delaunay triangulation that make it so useful.




The fundamental property is the Delaunay criterion. In the case of 2-D triangulations, this is often called the empty circumcircle criterion. For a set of points in 2-D, a Delaunay triangulation of these points ensures the circumcircle associated with each triangle contains no other point in its interior. This property is important. In the illustration below, the circumcircle associated with T1 is empty. It does not contain a point in its interior. The circumcircle associated with T2 is empty. It does not contain a point in its interior. This triangulation is a Delaunay triangulation. This presentation discusses how to extend 2-D Delaunay to 3-D Delaynay.





在下方填入你的資料或按右方圖示以社群網站登入: Logo

您的留言將使用 帳號。 登出 / 變更 )

Twitter picture

您的留言將使用 Twitter 帳號。 登出 / 變更 )


您的留言將使用 Facebook 帳號。 登出 / 變更 )

Google+ photo

您的留言將使用 Google+ 帳號。 登出 / 變更 )

連結到 %s